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This study attempts to explain the evolutionary pattern of a series of well-mixed
layers separated by thin high-gradient interfaces frequently observed in stratified
fluids. Such layered structures form as a result of the instability of the equilibrium
with uniform stratification, and their subsequent evolution is characterized by a
sequence of merging events which systematically increase the average layer thickness.
The coarsening of layers can take one of two forms, depending on the realized
vertical buoyancy flux law. Layers merge either when the high-gradient interfaces
drift and collide, or when some interfaces gradually erode without moving vertically.
The selection of a preferred pattern of coarsening is rationalized by the analytical
theory – the merging theorem – which is based on linear stability analysis for a series
of identical layers and strongly stratified interfaces. The merging theorem suggests
that the merger by erosion of weak interfaces occurs when the vertical buoyancy flux
decreases with the buoyancy variation across the step. If the buoyancy flux increases
with step height, then coarsening of a staircase may result from drift and collision
of the adjacent interfaces. Our model also quantifies the time scale of merging events
and makes it possible to predict whether the layer merging continues indefinitely
or whether the coarsening is ultimately arrested. The merging theorem is applied to
extant one-dimensional models of turbulent mixing and successfully tested against
the corresponding fully nonlinear numerical simulations. It is hypothesized that the
upscale cascade of buoyancy variance associated with merging events may be one of
the significant sources of the fine-scale (∼10 m) variability in the ocean.

1. Introduction
Small-scale turbulence in stratified fluids frequently results in the formation of a

series of well-mixed layers separated by thin high gradient interfaces, which, in the
oceanographic context, are commonly referred to as ‘staircases’. Persistent stepped
structures in the vertical temperature and salinity profiles have been well documented
in the Tyrrhenian Sea, below the Mediterranean outflow, in the tropical Atlantic,
and in the Arctic Ocean (see the reviews of Schmitt 1994, 2003; Kelley et al. 2003).
While the generation of oceanic staircases is generally attributed to double-diffusive
convection – an instability caused by the difference in the molecular diffusivities of
the individual density components – the staircases have been observed occasionally
even when the stratification is double-diffusively stable. Examples of such staircases
include observations of the stepwise temperature profiles in fresh-water lakes (Simpson
& Woods 1970) and laboratory experiments with turbulent one-component flows
(Ruddick, McDougall & Turner 1989; Park, Whitehead & Gnanadeskian 1994;
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Holford & Linden 1999). Regardless of whether the staircases are produced by
double-diffusion or by the mechanically generated turbulence, their formation can be
related to instabilities of the vertical buoyancy flux laws (Phillips 1972; Posmentier
1977; Balmforth, Llewellyn Smith & Young 1998). These studies discuss the evolution
of staircases in terms of the solutions of the buoyancy conservation equation

∂b

∂t
=

∂F

∂z
, (1)

where b(z, t) is the buoyancy and F (z, t) is the downward buoyancy flux, which is
assumed to be controlled by the buoyancy distribution. The buoyancy flux does not
necessarily instantaneously adjust to the buoyancy profile and can retain some fading
memory of the buoyancy distribution in the past. To explain the origin of staircases,
several studies formulated heuristic one-dimensional models of the buoyancy flux F

(Balmforth et al. 1998; Radko 2003). They demonstrated that the uniform large-scale
buoyancy gradient (bz = const), a trivial solution of (1) with uniform flux F , can
be unstable. This instability manifests itself in the form of growing, horizontally
uniform perturbations, which eventually transform the vertical buoyancy profile into
a well-defined staircase.

Before going on to discuss the staircases in stratified turbulent fluids, it should
be noted that the processes under consideration have direct counterparts in many
other physical systems. Natural sciences often deal with conserved quantities whose
dynamics are governed by the conservation law (1), where b and z do not necessarily
represent the buoyancy and the vertical coordinate. Examples of such systems include
the theory of phase transitions (Cahn & Hilliard 1958; Bates & Xun 1995); similar
problems arise in meteorology (Manfroi & Young 1999), traffic flow theory (Whitham
1974), and engineering (Chapman & Proctor 1980). The instabilities of various flux
laws are common, and the resulting stepped solutions have been extensively studied.
Development of strong jets in the homogeneous beta-plane turbulence (Rhines 1975),
the upscale energy transfer in baroclinically unstable flows (Panetta 1993), and the
Kolmogorov flow (Meshalkin & Sinai 1961; Balmforth & Young 2002) – these and
many other problems can be phrased in terms of the instability of one-dimensional
conservation equations. The specifics of each system are reflected in the expressions for
F in (1), the flux law models, which are dictated by the relevant physics and dynamics
at play. To be precise, this paper is focused on the oceanographic application of
our theory – the generation and evolution of steps in the vertical buoyancy profile,
although the proposed framework is believed to be of much broader fluid dynamical
relevance. Consequently, we shall continue to refer to b, z and F as the buoyancy,
vertical coordinate and buoyancy flux, respectively.

A ubiquitous feature of staircases in stratified fluids is related to their evolution in
time. Field observations (Zodiatis & Gasparini 1996), theoretical models (Balmforth
et al. 1998), laboratory (Park et al. 1994) and numerical (Radko 2003) experiments, all
indicate that the layers which develop initially are unsteady. The layers formed first
are relatively thin. However, in time, they merge continuously and the characteristic
step height increases correspondingly. The evolution of a series of pronounced layers
has been attributed – see the discussion in Huppert (1971) and Radko (2005) in
the context of oceanic double-diffusion – to the secondary instabilities of steady-
state staircases. Laboratory experiments indicate that the coarsening of staircases
takes one of two forms; layers merge either when interfaces drift and collide, or
when interfaces gradually erode without moving vertically (e.g. Park et al. 1994).
Both forms of coarsening were reproduced by the numerical simulations of the
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one-dimensional parameterized equations. Thus, Balmforth et al. (1998) used the
‘mixing length’ argument to construct a model of the mechanically forced turbulence
in a stratified fluid which expresses the vertical buoyancy flux in terms of the local
buoyancy gradient and the density of the kinetic energy. Integration of their model
equations indicated that the preferred mechanism of coarsening is associated with
the vertical drift and collision of interfaces, a process which will be referred to as
H -merger. On the other hand, Merryfield (2000) modelled the upgradient buoyancy
flux in a double-diffusive fluid and noticed a tendency for the steps with small
buoyancy variation to weaken even more and ultimately disappear – the ‘B-merger’
in our notation. Although these experiments indicate that the evolution of layers in
one-dimensional models is sensitive to the buoyancy flux law, the selection of the
preferred pattern of coarsening has not been properly explained yet.

This paper attempts to formulate a framework for discussion of merging events
which is based on linear stability analysis for a series of identical steps. It is argued
that the observed merging events are directly linked to the two modes of instability.
In the first mode (B-instability), slightly stronger – in terms of buoyancy variation –
interfaces grow further at the expense of weaker interfaces. In the second mode
(H -instability), slightly thicker layers thicken even more while thin layers shrink and
ultimately disappear. The key result of the stability analysis is expressed by the
‘merging theorem’, which states that if the buoyancy flux decreases with the buoyancy
variation across the step, then the staircase is affected by the B-instability, and the
spontaneous merger of layers occurs through gradual erosion of weak interfaces. If,
however, fluxes increase with step height, then coarsening of a staircase may result
from drift and collision of the adjacent interfaces. If both conditions are satisfied,
the preferred mechanism of coarsening is determined by the unstable mode with the
largest growth rate. These findings are used to rationalize the behaviour of staircases
noted in the aforementioned laboratory and numerical studies.

The merging theorem naturally leads to a simple technique for predicting, for any
given mixing model, the preferred pattern of coarsening, time scale of merging events,
and the ultimate fate of staircases. In connection with the latter issue, it should be
mentioned that Balmforth et al. and Merryfield’s numerical calculations suggest that
merging events go on indefinitely and therefore the step thickness inevitably increases
to the largest resolved scale of the experiment. While the endless coarsening, as we
demonstrate here, is possible for certain flux laws, there is no reason to expect that it is
the only, or even the most likely, scenario for the evolution of staircases in time. Thus,
Radko (2005) gives an example of the double-diffusive staircase which eventually
evolves to a fully equilibrated state. The mergers in his model cease when the average
layer thickness reaches a critical value, greatly exceeding the initial step height.

This paper is set out as follows. In § 2, we perform a linear stability analysis for
a series of identical steps and use it to formulate general criteria for the H - and B-
type merging events. In § 3 we revisit the one-dimensional models of vertical mixing
formulated by Balmforth et al. (1998) and Merryfield (2000), focusing our inquiry
on the dynamics of coarsening in simulated staircases. In § 4, we test the merging
theorem by applying it to the models in § 3 and comparing its predictions with the
corresponding numerical results. We summarize and draw conclusions in § 5.

2. The merging theorem
Our starting point is the stepped solution of the one-dimensional buoyancy

conservation equation (1), and the following analysis attempts to establish the basic
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Figure 1. Schematic diagram illustrating the stability analysis for an infinite series of layers
and interfaces. (a) Basic state consisting of identical steps. (b) Perturbed state in which the
buoyancy jumps at even interfaces are slightly increased and the jumps at odd interfaces are
decreased correspondingly. The interfaces are displaced vertically, and therefore thicknesses of
the adjacent layers are different.

principles of its evolution in time. The particular form of the flux law F is unspecified
at this point. We assume, however, that this flux law is such that the solution with
uniform buoyancy gradient is unstable, and the result of this instability is a series of
relatively well-mixed layers separated by thin high-gradient interfaces – a staircase. To
gain a preliminary understanding of the interaction between layers in the staircase, we
consider the dynamics of a simple, yet illuminating system (figure 1). The schematic
diagram in figure 1(a) shows a basic state consisting of a series of identical thin
high-gradient interfaces separated by low-gradient layers of equal thickness H . The
thickness of the high-gradient interfaces is assumed to be negligible compared to
the thickness of the layers. Following Radko (2005), we perturb this steady state
as indicated in figure 1(b). The jump in buoyancy across the interface at z = z2 is
slightly increased, which is compensated by decrease in the strength of the interfaces
at z = z1 and z = z3; bn n+1 denotes the value of buoyancy at the level exactly between
two adjacent interfaces znn+1 = (zn + zn+1)/2. The buoyancy variations across the two
steps in figure 1(b) are expressed as follows:

b12 − b01 = B − δ

b23 − b12 = B + δ

}
δ � B, (2)

where B = (∂b̄/∂z)H is the buoyancy variation over one step in the undisturbed
staircase in figure 1(a) and δ is a small perturbation. The thicknesses of the adjacent
layers in figure 1(b) are not necessarily equal:

H12 = H − h

H23 = H + h

}
h � H, (3)
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where Hn n+1 is the distance between the interfaces at z = zn and z = zn+1. The system
of layers and interfaces in figure 1(b) is periodic with the z-wavelength of 2H, and
perturbing the basic state in such a manner does not affect the overall buoyancy
gradient. Our objective is to determine whether the disturbance will grow in time,
implying instability of the basic state in figure 1(a), or remain small. The essential
difference between this model and that studied in Radko (2005) is that the high-
gradient interfaces are allowed to drift vertically.

For our purpose, it is convenient to use the buoyancy equation in the integral form,
which is obtained by integrating (1) over an arbitrary interval [zbot, ztop]:∫ ztop

zbot

∂b

∂t
dz =

∫ ztop

zbot

∂F

∂z
dz = F (ztop) − F (zbot), (4)

where ztop(t) and zbot(t) are two levels which may vary in time. Using the identity

d

dt

∫ ztop

zbot

b dz =

∫ ztop

zbot

∂b

∂t
dz +

dztop

dt
b(ztop) − dzbot

dt
b(zbot), (5)

we rewrite (4) as

d

dt

∫ ztop

zbot

b dz =
dztop

dt
b(ztop) − dzbot

dt
b(zbot) + F (ztop) − F (zbot). (6)

The integral relation (6) is first applied to the individual layers [zn, zn+1]:

d

dt

∫ zn+1

zn

b dz =
dzn+1

dt
bn+1 − dzn

dt
bn + Fn+1 − Fn, (7)

where Fi = F (zi). The major contribution to the integral of buoyancy in (7) comes
from the interior part of layers where the buoyancy gradient is nearly uniform, and
therefore ∫ zn+1

zn

b dz ≈ bn n+1Hn n+1. (8)

Applying (7) and (8) to two consecutive layers [zn, zn+1] where n= 1, 2 results in

d

dt
(H12b12) = F2 − F1 +

dz2

dt
b2 − dz1

dt
b1,

d

dt
(H23b23) = F3 − F2 +

dz3

dt
b3 − dz2

dt
b2.

⎫⎪⎬
⎪⎭ (9)

Since there is a considerable variation in buoyancy across the high-gradient interfaces,
it becomes necessary at this point to provide a precise definition of ‘buoyancy at the
interface’ bn in (9). Without loss of generality, we define the centre of the interface
as a point where the buoyancy is an average of the values at the centres of the two
adjacent layers:

bn =
bn−1 n + bnn+1

2
. (10)
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A similar set of integral relations results from the buoyancy budgets for regions
bounded by the centres of the adjacent layers (znn+1):

d

dt

(
H12b12

2
+

H23b23

2
+

H12�BL12

8
− H23�BL23

8

)
=

dz23

dt
b23 − dz12

dt
b12 + F23 − F12,

d

dt

(
H23b23

2
+

H34b34

2
+

H23�BL23

8
− H34�BL34

8

)
=

dz34

dt
b34 − dz23

dt
b23 + F34 − F23,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(11)

where Fnn+1 =F (znn+1); �BL12 and �BL23 are the buoyancy variations across the
interior of the layers in figure 1(b). Next, we use (9) and (11) to formulate the
equations for evolution of δ and h in time. For the δ-equation, we subtract the two
equations in (9). This result is further simplified by using the periodicity conditions
(F3 = F1, dz3/dt = dz1/dt , b3 = b1 + 2B) and (3):

d

dt
[H (B + δ) + h(b23 + b12)] = −2(F2 − F1) +

dz1

dt
(b3 + b1) − 2

dz2

dt
b2. (12)

Equation (10), combined with the periodicity conditions b01 = b23 −2B and b34 = b12+
2B , implies that

b1 + b3 = 2b2,

which further reduces (12) to

H
dδ

dt
+ 2h

db2

dt
= −2(F2 − F1). (13)

This equation simplifies further when we consider perturbations that are weak relative
to the basic state (δ � B, h � H ) and linearize (13) accordingly. Since db2/dt = 0 in
the basic steady state, this quantity is (at most) of the same order as the perturbation.
Neglecting the nonlinear term h(db2/dt) in (13) reduces our δ-equation to

d

dt
δ = − 2

H
(F2 − F1). (14)

Similarly, (11) is used to formulate an equation for h. The two equations in (11)
are subtracted, the result is simplified using the periodicity conditions:

B
dh

dt
− �BL12 + �BL23

4

dh

dt
− H

4

d

dt
(�BL23 − �BL12) = 2(F23 − F12) + 2

dz12

dt
δ, (15)

and (15) is linearized about the steady state in figure 1(a). Since dz12/dt =0 in the
basic steady state, this quantity tends to zero in the limit of a weak perturbation,
and therefore the nonlinear term 2(dz12/dt)δ in (15) is neglected. We also note that
at leading order, �BL12 ≈ �BL23 ≈ �BL, which reduces the h-equation to(

B − �BL

2

)
dh

dt
− H

4

d

dt
(�BL23 − �BL12) = 2(F23 − F12). (16)

To solve the equations in (14) and (16), it becomes necessary to specify how the
buoyancy fluxes at the interfaces and layers (Fn and Fnn+1) respond to changes in
(δ, h). For that, we introduce a new quantity – the steady ‘one-step’ flux F̃ . The one-
step structure represents an elementary steady single-step solution of the governing
equations for given step height H̃ and buoyancy variation B̃ [i.e. b(H̃ ) = b(0) +
B̃]; we also impose the periodic boundary conditions on the buoyancy gradient
[bz(0) = bz(H̃ )] and its derivatives at z =0 and z = H̃ . Consequently, the fluxes in the
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one-step solution are determined by two quantities, the buoyancy variation across the
step (B̃) and the step height (H̃ ). Some specific examples of the one-step flux laws
F̃ = F̃ (B̃, H̃ ) are presented in Appendices A and B. (It is also possible to extend the
merging theorem to the case when the one-step fluxes are determined by a larger
number of variables. Here we present only the simplest version of the theory.) Next,
the fluxes in (14) and (16) are approximated by the one-step laws. Note that replacing
the instantaneous fluxes in the evolving staircase with the steady-state flux laws
involves an implicit assumption that the time scale for adjustment of the one-step
flux (F̃ ) to changes in step height and buoyancy variation is much less than the time
scale of merging instability. This assumption, however, is likely to be satisfied and is
generally easy to justify – in § 4 we consider specific mixing models and show that
the one-step flux adjustment is indeed much faster than merging.

The instantaneous fluxes in layers and interfaces Fn and Fnn+1 in (14) and (16) are
replaced by their steady-state counterparts as follows. Flux at the nth interface (Fn) is
approximated by the one-step flux F̃ based on the parameters of a region extending
between the centres of two adjacent layers (zn−1 n and znn+1):

F1 ≈ F̃ (b12 − b01, z12 − z01),

F2 ≈ F̃ (b23 − b12, z23 − z12).

}
(17)

Since z23 − z12 = z12 − z01 = H , the difference between fluxes at the adjacent interfaces
reduces, at leading order, to

F2 − F1 =
∂F̃

∂B̃

∣∣∣∣H̃=H

B̃=B

2δ, (18)

and (14) becomes

d

dt
δ = −4δ

H

∂F̃

∂B̃

∣∣∣∣H̃ =H

B̃ = B

. (19)

Similarly, we assume and subsequently verify that the flux at the centre of each layer
(Fn n+1) can be approximated by its one-step counterpart based on thickness and
buoyancy variation across this layer

F12 = F̃ (b2 − b1, z2 − z1),

F23 = F̃ (b3 − b2, z3 − z2).

}
(20)

Since b3 − b2 = b2 − b1 = B , the h-equation in (16) reduces to

(
B − �BL

2

)
dh

dt
− H

4

d

dt
(�BL23 − �BL12) = 4h

∂F̃

∂H̃

∣∣∣∣H̃=H

B̃=B

. (21)

The variation of the interior gradients in (21) is written as

�BL23 − �BL12 =
∂�BL

∂H̃

∣∣∣∣H̃=H

B̃=B

2h, (22)
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and substitution of the normal modes (δ, h) = (δ0, h0) exp(λt) in (19) and (21) yields
the eigenvalue equation for growth rates:

λB = − 4

H

∂F̃

∂B̃
, λH =

4
∂F̃

∂H̃

B − �BL

2
− H

2

∂�BL

∂H̃

. (23a, b)

We also note in passing that if the buoyancy variation over the high-gradient interfaces
greatly exceeds its variation over layers (i.e. �BL � B), the equations for H -instability
in (21) and (23) further reduce to

B
dh

dt
≈ 4h

∂F̃

∂H̃
, λH ≈ 4

B

∂F̃

∂H̃
. (24)

Equation (23) provides an insight into the selection of the staircase coarsening pattern.
If the one-step buoyancy flux F̃ decreases with the buoyancy variation, then a series
of identical steps is affected by the B-instability. The monotonic growth of δ in (2) has
the effect of increasing the buoyancy variation across a step for which this variation
is already large – at the expense of the weaker one. Thus, the spontaneous merger of
layers in this case is expected to occur through gradual erosion of weak interfaces,
as in Merryifield (2000). If, however, fluxes increase with step height, then h grows
monotonically and coarsening of a staircase may result from the drift and collision of
adjacent interfaces (as in Balmforth et al. 1998). If both conditions are satisfied, the
preferred mechanism of coarsening depends on the relative magnitudes of the growth
rates in (23).

The foregoing framework offers a simple technique for determining, for any given
flux law, the evolutionary pattern of staircases. This technique can be summarized in
three steps.

(i) Formulation of the steady state one-step flux laws F̃ = F̃ (B̃, H̃ ) – see Appendices
A and B for examples of F̃ computed from the assumed flux-gradient relations (F ).

(ii) Evaluation of the growth rates of the B- and H -instabilities using (23).
(iii) Prediction of the evolutionary pattern of layers and the ultimate fate of the

staircase by focusing on the faster growing mode.
Of course, the possibility always exists that some mixing models may not satisfy the

assumptions of the merging theorem. All the following examples, however, indicate
that its predictions are remarkably accurate in describing the behaviour of simulated
staircases. Likewise, we are aware of no flux model that would violate the conditions
of the merging theorem.

3. Illustrative examples
In the following, the technique proposed in § 2 is applied to the specific flux models.

While possible applications of the merging theorem are numerous – several have
been mentioned in § 1, the choice of illustrative examples reflects the author’s current
interest in the dynamics of vertical mixing in stratified fluids.

3.1. Mechanically forced stratified turbulence

Our first example is a one-dimensional model formulated by Balmforth et al. (1998),
which is meant to represent dynamics of a stratified turbulent fluid forced by a stirring
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Figure 2. Formation and evolution of layers in the numerical experiment with Balmforth
et al.’s model (25). The buoyancy profiles are shown at (a–f ) t = 6 × 103, 1.4 × 104, 1.4 × 105,
3 × 106, 7.6 × 106, 107. The appearance of well-defined layers in (a) is followed by a series of
merging events in (b–f ).

device:

gt =
(
le1/2g

)
zz
, l =

e1/2

(e + g)1/2
,

et =
(
le1/2ez

)
z

− le1/2g +
(1 − e)e1/2

rl
.

⎫⎪⎪⎬
⎪⎪⎭ (25)

Here, g = bz is the buoyancy gradient and e is the kinetic energy density, non-
dimensionalized using the speed and size of a stirring device (see Balmforth et al.
1998, for details); the value of the dimensionless constant r used in the subsequent
calculations is r = 50. The vertical (downward) buoyancy flux in this model is

F = le1/2g =
eg

(e + g)1/2
. (26)

Linear stability analysis in Balmforth et al. (1998) indicates that the uniform buoyancy
gradient (ḡ) – a steady-state solution of (25) – is unstable for a finite range of ḡ:

glow < ḡ < ghigh, (27)

where glow = 0.014 and ghigh =0.036. The model equations (25) were rewritten with
buoyancy (rather than z) as the independent variable and then integrated in time
using a pseudospectral method analogous to that employed by Radko (2005). The
periodic boundary conditions for (g, e) were imposed at the ends of the computational
interval z =0, Lz. Calculations were initialized by the uniform gradient ḡ = 0.025,
slightly perturbed by a normal mode with wavelength W =30. The chosen height of
the computational domain was Lz = 8W = 240, resolved by N = 128 elements.

Figure 2 presents the evolution of the buoyancy profile b(z). The first stage of this
experiment is characterized by the growth of the unstable perturbation; modification
of the initial buoyancy distribution at t = 6 × 103 is shown in figure 2(a). By
t = 1.4 × 104 (figure 2b), the evolutionary pattern changes as high-gradient interfaces
start to migrate vertically. Figures 2(b)–(f ) illustrate the resulting coarsening of the
staircase: layers are not steady, but undergo a series of binary mergers, which leaves
only one layer within the limits of our computational domain at t = 107 in figure 2(f ).
Figure 3 plots the buoyancy gradient b(z) as a function of time and z and reveals that
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Figure 3. Space–time diagram of the buoyancy gradient for the experiment in figure 2. Dark
colour represents high-gradient regions. (a) Long time resolution, (b) short time resolution.
Note that the merger of steps is associated with the drift and collision of interfaces (the
H -merger scenario).

the merger events are associated with the drift and collision of adjacent interfaces –
the H -merger in our notation. The buoyancy jumps across the colliding interfaces
remain nearly equal.

3.2. Upgradient buoyancy flux

Our second example – and probably the simplest layer-forming mixing model –
represents the slow upgradient flux of density produced by double diffusion. This
model was discussed by Merryfield (2000), who examined the numerical solutions of
the piecewise-uniform linear diffusion equation

∂

∂t
b = Kf

∂2b

∂z2
, Kf < 0 for

∂b

∂z
> 0

∂

∂t
b = Kc

∂2b

∂z2
, Kc > 0 for

∂b

∂z
< 0

⎫⎪⎪⎬
⎪⎪⎭ Kc � |Kf |, (28)

where b is the buoyancy, Kf is the diffusivity of buoyancy in the double-diffusive
interfaces, and Kc is the diffusivity in the convecting layers. Double diffusion is driven
by the release of the potential energy by one of the density components, and therefore
it necessarily requires an overall potential energy decrease. Hence, the buoyancy flux
is upward (i.e. counter gradient) and diffusivity in the double-diffusive interfaces
(Kf ) is negative. The interfaces are separated by turbulent convecting layers, whose
dynamics are crudely modelled by strong downgradient diffusion (large positive Kc).
While this model clearly oversimplifies the dynamics of the double diffusive staircases,
it provides a convenient illustration of a coarsening pattern which is referred to here
as the B-merger.

One of the mathematical difficulties with regard to (28) is that the diffusion
equation with negative diffusivity is an ill-posed problem. Small-scale perturbations
to the uniform gradient amplify most rapidly, and their growth rate diverges as the
wavenumber increases. However, the ultraviolet catastrophe in this model is rather
unphysical, since in a double-diffusive fluid there is a minimum amplified wavelength,
whose scale is set by the nominal width of the salt fingers (the few centimetre filaments
generated by the primary double-diffusive instability). In order to introduce this high-
wavenumber cutoff in the model formulation, and thereby surmount the problem of
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Figure 4. Formation and evolution of layers in the numerical experiment with the upgradient
flux model, (29). The buoyancy profiles are shown at (a–f ) t = 5, 20, 75, 120, 240, 400. Note
the appearance of nearly homogeneous convecting layers separated by stratified interfaces at
t =20, followed by a series of merging events.

ill-posedness, the governing equations (28) are modified by adding the hyperdiffusion
term −µ(∂4b/∂z4). This modification suppresses the growth of small-scale modes, but
has little effect on scales that significantly exceed the salt-finger width.

Following Radko (2005), we consider the buoyancy field consisting of the linear
basic state b̄, which remains unaltered in time, and a departure b′ from it. Periodic
conditions are assumed for b′ at the ends of the interval z = [0, Lz]. The equations
of motion are non-dimensionalized using L =

√
µ/|Kf | as a unit of length, L2/|Kf |

as a unit of time, and b̄zL as a unit of buoyancy. The buoyancy equation in non-
dimensional units reduces to:

∂b

∂t
= −∂2b

∂z2
− ∂4b

∂z4
for

∂b

∂z
> 0, (29a)

∂b

∂t
=

Kc

|Kf |
∂2b

∂z2
− ∂4b

∂z4
for

∂b

∂z
< 0. (29b)

The nonlinearity of this system is hidden in the specification of the convecting and
interfacial zones.

The system of equations (29) has been integrated numerically. A pseudospectral
model was initiated by a uniform buoyancy gradient slightly perturbed by the linearly
fastest-growing unstable mode of (29a). The height of the computational domain was
Lz = 71, which is equivalent to eight fastest growing wavelengths, and Kc/|Kf | =103.
The first stage in evolution of the buoyancy profile (figure 4a) is characterized by the
monotonic growth of the unstable normal mode. By t =20 (figure 4b), the amplitude of
the perturbation becomes sufficient to create density inversions, where the convective
dynamics are represented by (29b). Since the diffusivity in such regions is extremely
high, buoyancy in layers becomes nearly homogeneous. Figures 4(c)–4(f ) illustrate
the evolution of the newly formed staircase in time: steps start to merge continuously,
and the coarsening continues until there is only one interface left. Figure 5 plots the
buoyancy gradient g = bz as a function of time and z. While this and the previous
(figures 2 and 3) experiments are both characterized by the continuous coarsening
of a staircase, there is a principal difference in the mechanics of merging events.
Unlike in the Balmorth et al. (1998) model, layers in figures 4 and 5 merge when the
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Figure 5. Space–time diagram of the buoyancy gradient for the experiment in figure 4. Unlike
the calculation in figure 3, layers merge when the relatively strong interfaces grow further at the
expense of weaker interfaces which gradually decay and eventually disappear (the B-merger
scenario).

relatively weak interfaces decay and eventually disappear without moving vertically.
A number of experiments were performed with different parameters for the problem.
All of them indicate that the B-merger – erosion of weak interfaces – is a generic
property of the upgradient flux model in (29), the property which we rationalize in
the next section using the merging theorem.

4. Rationalization of the numerical results
Now we examine whether the behaviour observed in the numerical experiments

(§ 3) is consistent with the predictions of our theoretical model in § 2.

4.1. Mechanically forced stratified turbulence: H-merger

Numerical solutions of the Balmforth et al. (1998) model equations revealed that
the formation of a staircase is followed by a series of H -mergers. To explain this
numerical result, we compute the growth rates of the B- and H -instabilities in
(23). The asymptotic (H̃ → ∞) expression for the steady one-step flux F̃ is given by
(A18) in Appendix A. Recalling that B̃ = ḡH̃ , we rewrite the λB-equation in (23)
as

λB = − 4

H 2

∂F̃

∂ḡ

∣∣∣∣
H̃=const

. (30)

Substituting (A18) in (30) yields:

λB =
4

H

α1.5
1 gmax

γ (gmax − gmin)
exp(−2a1H ) for ḡ < g0,

λB =
4

H

α1.5
2 gmin

γ (gmax − gmin)
exp(−2a2H ) for ḡ > g0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(31)
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Figure 6. Evolution of the buoyancy profile in the numerical experiment with the periodic
‘two-step’ solution of the Balmforth et al. (1998) model eqations. (a) The buoyancy distribution
at t = 0, t = 1.8 × 107, t = 2 × 107 and t = 3 × 107 is indicated by the black, blue, green and red
curves, respectively. The initial buoyancy profile consists of two nearly identical steps. In time,
the thickness of one of the steps continuously decreases and, eventually, the system evolves to
a steady one-step configuration. (b) The difference in step heights of the experiment in (a) is
plotted in logarithmic coordinates as a function of time (solid line). The theoretical growth
predicted by (36) is indicated by the dashed line.

and the values of constants in (31) are given in (A21)–(A24) in Appendix A. Similarly,
the λH -equation in (23) is rewritten, making use of (A18) and (A27), as

λH =

4
∂F̃

∂H̃

∣∣∣∣
B̃=const

B − �BL

2
− H

2

∂�BL

∂H̃

≈
4

(
∂F̃

∂H̃

∣∣∣∣
ḡ=const

− ḡ

H

∂F̃

∂ḡ

∣∣∣∣
H̃=const

)

H (ḡ − gmin)
. (32)

When the asymptotic expression for the one-step flux (A18) is substituted into (32),
we arrive at the explicit expression for λH :

λH =
4

H (ḡ − gmin)

α1.5
1 gmaxgmin

γ (gmax − gmin)
exp(−2a1H ) for ḡ < g0,

λH =
4

H (ḡ − gmin)

α1.5
2 gmaxgmin

γ (gmax − gmin)
exp(−2a2H ) for ḡ > g0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(33)

Since the growth rates in (31) and (33) are always positive, the staircase supports
both H - and B-instabilities. To explain the apparent (see figure 3) preference for the
H -mergers in the numerical simulations, we compare λH and λB:

λB

λH

=
ḡ − gmin

gmin

<
g0 − gmin

gmin

= 0.49 for ḡ < g0,

λB

λH

=
ḡ − gmin

gmax

<
ghigh − gmin

gmin

= 0.18 for ḡ > g0.

⎫⎪⎪⎬
⎪⎪⎭ (34)

Thus, H -instability grows faster than B-instability, and therefore unbiased initial
conditions are likely to result in a series of H -mergers.

To validate our theoretical model on a quantitative level, we also performed a
more controlled experiment using a ‘two-step’ structure constructed as follows. First,
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we numerically computed the steady one-step solution whose height is H̃ = 120 and
B̃ = ḡH̃ =3, which was then combined with another identical step. A small-amplitude
random noise was added to expedite the instability and the result was integrated in
time numerically. Figure 6(a) shows the evolution of this system to a new one-step
steady state, twice as large as the original; the two steps H -merged. In figure 6(b),
we plot the difference in heights (2h) of the two steps in logarithmic coordinates as a
function of time and compare its growth with the prediction of the merging theorem.
The theoretical growth rate can be, in principle, evaluated using our asymptotic
(H → ∞) expression in (33). However, this asymptotic estimate is not sufficiently
accurate for the relatively thin layers in figure 6. Therefore, the theoretical growth
rate has been computed directly from (23), which requires knowing the derivative of
the one-step flux (F̃ ) with respect to the step height. This quantity was estimated by
performing two numerical experiments in which the height of the one-step structure
(H̃ ) was varied, whereas B̃ was kept constant. The resulting fluxes equilibrated at the
level of

F̃ (H̃ 1) = 7.47070 × 10−3, H̃ 1 = 124,

F̃ (H̃ 2) = 7.47013 × 10−3, H̃ 2 = 116.

}
(35)

Using these fluxes, we evaluate ∂F̃ /∂H̃ and thus independently estimate the linear
growth rate of the merging instability in figure 6:

λH =

4
∂F̃

∂H̃

∣∣∣∣H̃=H

B̃=B

H (ḡ − gmin)
≈ 1.76 × 10−7. (36)

The theoretical prediction (36) is plotted (dashed line) along with the numerical
result in figure 6(b), and their apparent agreement supports our theoretical model of
merging in § 2. Another notable feature of the experiment in figure 6 is related to the
subcritical character of merging instability; the finite-amplitude effects tend to further
accelerate the merging process. Thus, once initiated, the instability does not saturate
at finite level, but grows until the complete merger of the adjacent layers.

4.2. Mechanically forced stratified turbulence: B-merger

Equations (31) and (33) indicate that the Balmforth et al. (1998) model is affected
by both B- and H -instabilities and the reason for the apparent preference of the
H -merger dynamics in figures 2, 3 and 6 is related to its higher growth rate (λH ). It
is of interest, however, to determine whether the B-merger dynamics can be realized
for some specific initial conditions. Therefore, our next experiment was initiated by a
two-step structure with identical step heights (H = 150), but with slightly different (by
3%) buoyancy variations across the steps. Since (34) suggests that the growth rates
of H - and B-instabilites are not drastically different for ḡ → g−

0 , we used ḡ =0.016.
The computational domain Lz = 2H = 300 was resolved by N = 128 elements and the
resulting evolutionary pattern of buoyancy gradient is shown in figure 7. As in our
previous two-step calculation (figure 5), this structure gradually evolved to a one-
step configuration. This time, however, the transition to the final state followed the
B-merger scenario – the interfaces did not visibly move throughout the experiment,
but a weaker interface gradually eroded and eventually disappeared.†

† A reviewer pointed out that this B-merger experiment can be considered as a counterexample
to the conventional vision of coarsening in systems of the Cahn–Hilliard type. Dynamics of such
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Figure 7. Time evolution of the buoyancy gradient in the two-step experiment with the
Balmforth et al. (1998) model. Initially, two steps are of equal height, but have slightly
different buoyancy variations. In time, the layers B-merged to form a single step. This
calculation illustrates the significance of the initial condition for selection of the merging
pattern in models supporting both B- and H -instabilities.

4.3. Upgradient flux model

Finally, the merging theorem is applied to the upgradient flux model discussed in
§ 3.2. The explicit expression (B10) for the one-step buoyancy flux (F̃ ) is derived in
Appendix B. Substituting (B10) into (23) yields

λB = − 4

H

∂F̃

∂B̃

∣∣∣∣H̃=H

B̃=B

=
2

πH
> 0, (37)

which proves that the system of layers in the negative buoyancy flux model is always
unstable with respect to the B-merging instability. On the other hand, the growth rate
of H -merging instability in (23) is exactly zero, since the one-step buoyancy flux F̃ is
independent of H̃ . These findings explain the evolution of the numerical staircase in
figures 4 and 5, undergoing a series of B-mergers until step size reaches the maximum
scale resolved by the computational domain.

To be more quantitative in comparing the numerical results with theoretical
predictions, we performed a numerical experiment with the ‘two-step’ structure. The
steady-state solution in figure 4(f ) was combined with another identical step and a
small-amplitude random noise was added to expedite the instability. The result was
integrated in time numerically. Figure 8(a) shows the evolution of this system which
leads to a new one-step steady state, twice as large as the original. As expected,

models is generally discussed in terms of the metastable equilibrium solutions which evolve by
following, in our notation, the H -merger scenario (e.g. Legras, Frisch & Villone 1999).
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Figure 8. Evolution of the buoyancy profile in the numerical experiment with the periodic
‘two-step’ solution of the upgradient flux model. (a) The buoyancy distribution at t =0, t =800,
t = 1000 and t =1500 is indicated by the black, blue, green and red curves, respectively. The
initial buoyancy profile consists of two nearly identical steps. In time, the buoyancy jump
across the upper (lower) interface continuously decreases (increases). The upper interface is
eventually eliminated and the system evolves to a steady one-step configuration. (b) The
difference in buoyancy jumps across the two interfaces in (a) is used as a measure of strength
of the B-merging perturbation and is plotted in logarithmic coordinates as a function of time
(solid line). Also plotted (dashed line) is the theoretical prediction for the exponential growth
from (37).

the merger of the two steps followed the B-merger scenario. In figure 8(b), we
plot (solid line) the difference in buoyancy variation across the two steps (2δ) in
logarithmic coordinates as a function of time. Also plotted (dashed line) is the
theoretical prediction for the growth rate of the disturbance from (37). The apparent
agreement between the theoretical and numerical results lends credence to the merging
theorem in § 2. A small (∼3%) error of the theoretical estimate is attributed to the
finite thickness of high-gradient interfaces, which has not been taken into account by
the merging theorem.

The success of our theory also implies that the instantaneous fluxes in merging
layers are well represented by the steady-state one-step fluxes – one of the critical
assumptions of the merging theorem. This feature is readily understood by comparing
the time scale of flux adjustment in one-step solutions to changes in H or B with the
time scale of merging instability. The former is controlled by the speed of adjustment
of thin high-gradient interfaces:

tadj ∼ �b � ∂b̄

∂z
H = H, (38)

whereas the merging time scale can be estimated from the growth rate of the B-
instability in (37):

tB ∼ 1

λB

=
πH

2
. (39)

The inequality tB � tadj justifies the use of the one-step steady-state flux law in
Appendix B for the description of the slowly evolving system of merging layers.
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5. Discussion and conclusions
Layers of relatively mixed water separated by the high-gradient interfaces are

frequently observed in stratified lakes and in the ocean. Such stepped structures
have also been reproduced in laboratory and numerical experiments with stratified
turbulent fluids. Spontaneous generation of layers is generally attributed to the
instabilities of the equilibrium with uniform stratification, and similar processes are
known to occur in many other physical systems (e.g. theory of phase transitions,
Cahn & Hilliard 1958). After their formation, layers typically undergo a series of
merging events which greatly increase their average height. This study attempts to
explain the dynamics of coarsening and to develop a sufficiently general technique
for predicting, from given buoyancy flux laws, the evolutionary pattern of layers. We
identify two principal mechanisms of coarsening: the B-merger, involving the growth
of relatively strong interfaces at the expense of weaker interfaces, which gradually
decay and eventually disappear, and H -merger, characterized by the vertical drift and
collision of the adjacent interfaces. This evolutionary behaviour is explained by the
linear stability analysis for a series of identical layers and interfaces – the merging
theorem – which suggests that the two types of merger are manifestations of two
distinct modes of instability. The first mode is unstable if the buoyancy flux decreases
with the buoyancy variation across the step, and is shown to cause the B-merger,
whereas the H -instability occurs when the buoyancy flux increases with the step
height.

The merging theorem has been applied to two one-dimensional models of mixing:
the model of the mechanically forced turbulence formulated by Balmforth et al.
(1998), and the upgradient flux model (Merryfield 2000). For the upgradient model
we predict – and confirm by numerical simulations – that the staircase is always
unstable with respect to B-instability, but does not support the H -mergers. The
situation with regard to the Balmforth et al. (1998) model is more complicated: both
instabilities are always present. However, the growth rate of H -instability exceeds
the growth rate of B-instability, which explains the preference for H -mergers in the
numerical experiments with unbiased initial conditions. Both types of coarsening have
been observed in the laboratory experiments (Park et al. 1994).

Although discussion in this paper is focused on prominent staircases, presumably
formed by fully developed turbulence, we believe that many aspects of our theory may
be qualitatively relevant to less pronounced examples of layered systems. Balmforth
& Young (2005), for instance, show that layering may also develop as a result of the
nonlinear evolution of laminar mixing flows. The resulting system of gentle layers
frequently exhibit coarsening, not unlike that discussed in our study. Direct numerical
simulations in Simeonov & Stern (2007) indicate that interactions in a vertically
periodic system of lateral intrusions also lead to the binary mergers which increase
their vertical scale. It is therefore possible that the upscale transfer of buoyancy
variance associated with merging events is a significant source of the fine-scale
(∼10 m) variability in the regions of active mixing in the ocean.

Finally, we wish to point out that although in our specific examples (Balmforth
et al. 1998; Merryfield 2000) the layer merging goes on indefinitely, there is no reason
to assume that the endless coarsening is a generic feature of staircases. Existing
formulations of the buoyancy flux laws, which typically rely on crude heuristic
arguments, are not intended to express the complete quantitative theory of stratified
turbulence. Hence, it is likely that advances in our understanding of mixing in
stratified fluids will lead to modification of these models. As demonstrated by Radko
(2005), taking into account some subtle effects in the formulation of the flux laws
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may lead to the appearance of a critical scale of layers beyond which the coarsening
is arrested. Thus, we suggest that future effort should be directed towards formulating
the physically based mixing models capable of representing the eventual equilibration
of staircases. The simple technique for quantifying the layer-merging characteristics
that we develop and illustrate herein should prove helpful in this regard.

The author thanks Neal Balmforth, William Merryfield, and reviewers for helpful
comments. Support of the National Science Foundation (grant OCE 0547650) is
gratefully acknowledged.

Appendix A. The elementary one-step solution for the Balmforth et al. (1998)
model

To determine how the steady flux (F̃ ) in the elementary one-step solution of
Balmforth et al. (1998) equations responds to changes in the buoyancy variation
across the step (B̃) and step height (H̃ ), we adopt their description of the steady
states which casts the energy equation (25) in the following form:

1
2
e2
b + U (e) = E, (A 1)

where

U = − 1
3
ψ − 1

6
ln

(
ψ − 1

ψ + 1

)
+ 1

2
ln e +

1

RF̃ 2

(
e2

2
− e3

3

)
, ψ =

√
1 +

4e3

F̃ 2
. (A 2)

Equation (A1) is the canonical equation of motion of the nonlinear oscillator, in
which buoyancy b plays the role of time, e is the displacement, and U is the potential.
The representative pattern of U (e) (figure 9) is characterized by two local maxima:
U1 = U (emin) and U2 = U (emin). The pattern of the e(b) relation can be described as
a series of periodic nonlinear oscillations of e within a region bounded by these
maxima. For a given value of E in (A1), e oscillates in between e1 and e2 – two
solutions of the equation U (e) = E:

emin < e1 � e � e2 < emax. (A 3)

Our discussion here is focused on the limit of large layer thickness (H̃ → ∞) and
finite overall buoyancy gradient (ḡ). This limit corresponds to large total buoyancy
variation across the step (B̃ = ḡH̃ ), and also requires large individual buoyancy
variations across its low-gradient layer region (�BL) and the high-gradient interface
(�BI ). The situation in which large variations in buoyancy are accompanied by finite
variations in e– in both layers and interfaces – implies that eb is low in most of the
domain. In view of (A1), this requires that:

(i) E and the two maxima of the potential are nearly equal (U1 ≈ U2 ≈ E);
(ii) the value of e in the bulk of each layer (interface) is sufficiently close to emax

(emin).
Extending the analogy with the motion of a nonlinear oscillator even further, we

note that the large-layer-thickness regime corresponds to a long period oscillation of
a particle between the two nearly equal maxima of the potential U . If the energy
of the particle is sufficiently close to the maxima of U , the particle spends most of
time near the potential peaks, whereas the transition between these two regimes is
relatively rapid. As discussed in Balmforth et al. (1998), the configuration in which
U1 = U2, corresponds to a specific value of the flux (F ∗), and therefore fluxes in thick
steps are sufficiently close to F ∗. However, the merger dynamics is actually controlled
by this slight variation of flux – the variation which we analyse next.
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Figure 9. Schematic diagram illustrating the asymptotic (H̃ → ∞) analysis of the steady
one-step fluxes in the Balmforth et al. (1998) model (see the text).

To describe analytically flux in the one-step solution in the limit H̃ → ∞, we focus
on the regions of the U (e) relation (see figure 9) in the immediate vicinity of its local
maxima – emax and emin. Retaining the leading-order terms in the Taylor expansion of
the potential, we approximate U there as follows:

U (e) ≈ U1 − α1

(e − emin)
2

2
for e → emin,

U (e) ≈ U2 − α2

(e − emax)
2

2
for e → emax,

⎫⎪⎪⎬
⎪⎪⎭ (A 4)

where U1,2, α1,2, emin, emax are the constants; their numerical values can be readily
estimated from the expression for the potential (A2) for F̃ = F ∗. Next, consider E

which is sufficiently close to U1 and U2. The lowest (e1) and the highest (e2) values of
e, for any given E, can be obtained by requiring that eb =0 in (A1) and using (A4):

E ≈ U1 − α1

(e1 − emin)
2

2
, E ≈ U2 − α2

(e2 − emax)
2

2
. (A 5)

The (leading-order) buoyancy variation over the layers and interfaces is determined
by rewriting (A1) as

db

de
=

1√
2[E − U (e)]

, (A 6)

and then integrating (A6) over the interface:

�BI =

∫ e′

e1

de√
2[E − U (e)]

, (A 7)

where e′ is (rather loosely) defined here as a point which is sufficiently close to emin,
that the Taylor expansion in (A4) is still applicable, and yet separated from emin much
farther than e1:

e1 − emin � e′ − emin. (A 8)
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Using (A4), we approximate the integral in (A7) as

�BI =

∫ e′

e1

de√
α1[(e − emin)2 − (e1 − emin)2]

=
1

√
α1

a cosh
e′ − emin

e1 − emin

. (A 9)

Taking (A8) into account further reduces (A9) to

�BI ≈ 1
√

α1

ln

(
2

e′ − emin

e1 − emin

)
≈ − 1

√
α1

ln(e1 − emin). (A 10)

Note that (A10) is, at leading order, independent of e′, which confirms our expectation
that the buoyancy variation over the interface is largely determined by the pattern
of the potential U (e) in the immediate vicinity of emin. Similarly, we estimate the
buoyancy variation over the low-gradient layer as

�BL ≈ − 1
√

α2

ln(emax − e2). (A 11)

Equations (A10) and (A11) are used to estimate the layer and interface thicknesses:

HL =
�BL

gmax

, HI =
�BI

gmin

, (A 12)

where gmin (gmax) are the values of the buoyancy gradient corresponding to emax (emin).
Next, we insist that the sum of the buoyancy variations across the layer and

the interface in (A10), (A11) is equal to the total buoyancy variation B̃ = ḡH̃ and,
similarly, the sum of their thicknesses in (A12) is equal to the total step height H̃ :

�BL + �BI = B̃, HL + HI = H̃ . (A 13)

Drawing together (A10)–(A13), we arrive at

a1 =
√

α1gmax

ḡ − gmin

gmax − gmin

where a1 = − ln(e1 − emin)

H̃
,

a2 =
√

α2gmin

gmax − ḡ

gmax − gmin

where a2 = − ln(emax − e2)

H̃
.

⎫⎪⎪⎬
⎪⎪⎭ (A 14)

The final condition, required to close the problem and determine F̃ as a function
B̃ and H̃ , comes from the relation between �U = U1 − U2 and F̃ . Since there is a
specific flux value F̃ = F ∗ for which the two maxima of the potential are exactly equal
(U2 =U1), and since F̃ is close to F ∗ for H̃ → ∞, the leading-order Taylor expansion
of �U (F̃ ) yields

�U = U1 − U2 ≈ γ (F̃ − F ∗). (A 15)

Substitution of U1 and U2 from (A5) into (A15) results in

α1

(e1 − emin)
2

2
− α2

(e2 − emin)
2

2
= γ (F̃ − F ∗), (A 16)

which we rewrite in terms of a1,2 in (A14) as follows:

α1 exp(−2a1H̃ ) − α2 exp(−2a2H̃ ) = 2γ (F̃ − F ∗). (A 17)

In the limit H̃ → ∞, this expression further simplifies to

α1 exp(−2a1H̃ ) = 2γ (F̃ − F ∗) for a1 < a2,

−α2 exp(−2a2H̃ ) = 2γ (F̃ − F ∗) for a1 > a2.

}
(A 18)
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Equation (A14) indicates that a1 (a2) is an increasing (decreasing) function of ḡ, and
therefore, for fixed H̃ , the buoyancy flux F̃ decreases with B̃ . As we discuss in § 2, this
feature implies that the system of identical layers in the Balmforth et al. (1998) model
is always unstable with respect to B-instability, and therefore merging events go on
indefinitely. The analysis in § 4 indicates that the system is unstable with respect to
H -instability as well. Condition a1 >a2 (a1 < a2) in (A18) corresponds to a sufficiently
large (small) overall buoyancy gradient ḡ > g0 (ḡ < g0). The value of buoyancy that
separates these two regimes is computed by requiring a1 = a2 in (A14):

g0 =
(
√

α1 +
√

α2)gmingmax√
α1gmax +

√
α2gmin

. (A 19)

For a more quantitative discussion of merging instabilities, we now calibrate the
one-step flux law predicted by our asymptotic (H̃ → ∞) model. The configuration for
which the two maxima of the potential are equal occurs for F̃ = F ∗ = 0.00747 (see
Balmforth et al. 1998). From (A2), we calculate the location of the two maxima at
F̃ = F ∗:

emin = 0.022, emax = 0.449, (A 20)

which corresponds to the buoyancy gradients of

gmin = 0.0113, gmax = 0.1342; (A 21)

the coefficients of the Taylor expansion in (A4) are:

α1 = − ∂2U

∂e2

∣∣∣∣
e=emin

= 209, α2 = − ∂2U

∂e2

∣∣∣∣
e=emax

= 66; (A 22)

and g0 in (A19) is estimated using (A20)–(A22):

g0 = 0.0168. (A 23)

Likewise, we use (A2) to calibrate the coefficient γ in (A15):

γ =
∂�U

∂F̃
= 3.24 × 103, (A 24)

which makes our expression for the buoyancy flux in (A17) explicit.
For completeness, we also quantify the dependence of �BL – the variation of

buoyancy in the interior of layers in (23) – on H̃ and B̃ . For that, we make use of
the observation (Balmforth et al. 1998) that the buoyancy gradient in the interior of
layers (gL) satisfies the ‘equilibrium flux-gradient relation’ – a unique relation between
gL and F̃– which we linearly approximate in the vicinity of F ∗as

gL ≈ gmin + ω(F̃ − F ∗). (A 25)

Equation (A25) makes it possible to evaluate how the buoyancy variation across the
layer responds to changes in H̃ – the information required to compute the growth
rate of H -merging instability in (23):

∂�BL

∂H̃
≈ ∂(gLH̃ )

∂H̃
= gmin + ω

∂F̃

∂H̃
. (A 26)

Noting that ∂F̃ /∂H̃ becomes exponentially small for H̃ → ∞, (A26) is further reduced
to

∂�BL

∂H̃
≈ gmin. (A 27)
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Appendix B. The elementary one-step solution for the upgradient flux model
Consider a steady one-step solution of the upgradient flux model (29), exemplified

by the final state of the numerical experiment in figure 4(f ). The one-step
solution consists of a thin high-gradient interface bounded by much thicker, almost
homogeneous convective layers. B̃ is the overall buoyancy variation across the step
and H̃ is the step height. Without loss of generality, the origin of the coordinate
system is placed exactly at the centre of the interface. Thus the interface, where
buoyancy increases with z, occupies a finite interval −l < z < l, and the buoyancy
gradient vanishes at its endpoints:

bz(−l) = bz(l) = 0. (B 1)

The constant downward vertical buoyancy flux in the interface is given by

F̃ = −∂b

∂z
− ∂3b

∂z3
for − l < z < l, (B 2)

and the buoyancy distribution in the interface satisfies the steady form of (29a):

∂2b

∂z2
+

∂4b

∂z4
= 0, (B 3)

whose general solution is given by

b = C1 sin(z) + C2 cos(z) + C3z + C4. (B 4)

Boundary conditions (B1) requires that C2 = 0, and therefore

bz = C1 cos(z) + C3. (B 5)

At z = ± l, the interface smoothly merges with the nearly homogeneous mixed layers,
and therefore we also insist on the continuity of the second derivative of buoyancy:

bzz(−l) = bzz(l) = 0, (B 6)

which implies that

sin(l) = 0 → l = πn, n = 1, 2, . . . . (B 7)

Numerical simulations indicate that the gradient in the interface monotonically
increases towards the centre of the interface, which corresponds to n = 1 in (B7), and
therefore

l = π. (B 8)

Drawing together (B1), (B5) and (B8) yields C3 = C1.
Since the convecting layer is nearly homogeneous, the total buoyancy variation

across the step (B̃) is dominated by the contribution from the interface:

B̃ ≈ b(l) − b(−l) = 2C3l = 2πC3. (B 9)

The vertical buoyancy flux (B2) is calculated from (B5):

F̃ = −C3 = − B̃

2π
. (B 10)

Equation (B10) indicates that the buoyancy flux in steady one-step solutions decreases
with B̃ and is largely independent of H̃ . As we discuss in § 2, this feature is critical for
the dynamics of merger events in a staircase – it implies that the system of identical
layers is always unstable with respect to B-instability, but stable with respect to
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H -instability. Thus, B-merging events in the upgradient flux model are expected go
on indefinitely.
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